121 research outputs found

    Digital Alchemy: Matter and Metamorphosis in Contemporary Digital Animation and Interface Design

    Get PDF
    The recent proliferation of special effects in Hollywood film has ushered in an era of digital transformation. Among scholars, digital technology is hailed as a revolutionary moment in the history of communication and representation. Nevertheless, media scholars and cultural historians have difficulty finding a language adequate to theorizing digital artifacts because they are not just texts to be deciphered. Rather, digital media artifacts also invite critiques about the status of reality because they resurrect ancient problems of embodiment and transcendence.In contrast to scholarly approaches to digital technology, computer engineers, interface designers, and special effects producers have invented a robust set of terms and phrases to describe the practice of digital animation. In order to address this disconnect between producers of new media and scholars of new media, I argue that the process of digital animation borrows extensively from a set of preexisting terms describing materiality that were prominent for centuries prior to the scientific revolution. Specifically, digital animators and interface designers make use of the ancient science, art, and technological craft of alchemy. Both alchemy and digital animation share several fundamental elements: both boast the power of being able to transform one material, substance, or thing into a different material, substance, or thing. Both seek to transcend the body and materiality but in the process, find that this elusive goal (realism and gold) is forever receding onto the horizon.The introduction begins with a literature review of the field of digital media studies. It identifies a gap in the field concerning disparate arguments about new media technology. On the one hand, scholars argue that new technologies like cyberspace and digital technology enable radical new forms of engagement with media on individual, social, and economic levels. At the same time that media scholars assert that our current epoch is marked by a historical rupture, many other researchers claim that new media are increasingly characterized by ancient metaphysical problems like embodiment and transcendence. In subsequent chapters I investigate this disparity

    Azimuthal anisotropy of charged jet production in root s(NN)=2.76 TeV Pb-Pb collisions

    Get PDF
    We present measurements of the azimuthal dependence of charged jet production in central and semi-central root s(NN) = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as nu(ch)(2) (jet). Jet finding is performed employing the anti-k(T) algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero nu(ch)(2) (jet) is observed in semi-central collisions (30-50% centrality) for 20 <p(T)(ch) (jet) <90 GeV/c. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the nu(2) of single charged particles at high p(T). Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Forward-central two-particle correlations in p-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    Two-particle angular correlations between trigger particles in the forward pseudorapidity range (2.5 2GeV/c. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B. V.Peer reviewe

    Event-shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at root(NN)-N-S=2.76 TeV

    Get PDF
    Peer reviewe

    Pseudorapidity and transverse-momentum distributions of charged particles in proton-proton collisions at root s=13 TeV

    Get PDF
    The pseudorapidity (eta) and transverse-momentum (p(T)) distributions of charged particles produced in proton-proton collisions are measured at the centre-of-mass energy root s = 13 TeV. The pseudorapidity distribution in vertical bar eta vertical bar <1.8 is reported for inelastic events and for events with at least one charged particle in vertical bar eta vertical bar <1. The pseudorapidity density of charged particles produced in the pseudorapidity region vertical bar eta vertical bar <0.5 is 5.31 +/- 0.18 and 6.46 +/- 0.19 for the two event classes, respectively. The transverse-momentum distribution of charged particles is measured in the range 0.15 <p(T) <20 GeV/c and vertical bar eta vertical bar <0.8 for events with at least one charged particle in vertical bar eta vertical bar <1. The evolution of the transverse momentum spectra of charged particles is also investigated as a function of event multiplicity. The results are compared with calculations from PYTHIA and EPOS Monte Carlo generators. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Elliptic flow of muons from heavy-flavour hadron decays at forward rapidity in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    The elliptic flow, v(2), of muons from heavy-flavour hadron decays at forward rapidity (2.5 <y <4) is measured in Pb-Pb collisions at root s(NN)= 2.76TeVwith the ALICE detector at the LHC. The scalar product, two- and four-particle Q cumulants and Lee-Yang zeros methods are used. The dependence of the v(2) of muons from heavy-flavour hadron decays on the collision centrality, in the range 0-40%, and on transverse momentum, p(T), is studied in the interval 3 <p(T)<10 GeV/c. A positive v(2) is observed with the scalar product and two-particle Q cumulants in semi-central collisions (10-20% and 20-40% centrality classes) for the p(T) interval from 3 to about 5GeV/c with a significance larger than 3 sigma, based on the combination of statistical and systematic uncertainties. The v(2) magnitude tends to decrease towards more central collisions and with increasing pT. It becomes compatible with zero in the interval 6 <p(T)<10 GeV/c. The results are compared to models describing the interaction of heavy quarks and open heavy-flavour hadrons with the high-density medium formed in high-energy heavy-ion collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V.Peer reviewe

    Measurement of charged jet production cross sections and nuclear modification in p-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    Charged jet production cross sections in p-Pb collisions at root s(NN) = 5.02 TeV measured with the ALICE detector at the LHC are presented. Using the anti-k(T) algorithm, jets have been reconstructed in the central rapidity region from charged particles with resolution parameters R = 0.2 and R = 0.4. The reconstructed jets have been corrected for detector effects and the underlying event background. To calculate the nuclear modification factor, R-pPb, of charged jets in p-Pb collisions, a pp reference was constructed by scaling previously measured charged jet spectra at root s = 7 TeV. In the transverse momentum range 20Peer reviewe

    Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    Peer reviewe

    燒津鰹漁業に於ける船仲組織(上) - 本邦漁業に特異なる勞働組織の一例 -

    Get PDF
    We report on the measurement of freeze-out radii for pairs of identical-charge pions measured in Pb-Pb collisions at √sNN = 2.76 TeV as a function of collision centrality and the average transverse momentum of the pair kT. Three-dimensional sizes of the system (femtoscopic radii), as well as direction-averaged onedimensional radii are extracted. The radii decrease with kT, following a power-law behavior. This is qualitatively consistent with expectations from a collectively expanding system, produced in hydrodynamic calculations. The radii also scale linearly with _dNch/dη_1/3. This behavior is compared to world data on femtoscopic radii in heavy-ion collisions. While the dependence is qualitatively similar to results at smaller √sNN, a decrease in the ratio Rout/Rside is seen, which is in qualitative agreement with a specific prediction from hydrodynamic models: a change from inside-out to outside-in freeze-out configuration. The results provide further evidence for the production of a collective, strongly coupled system in heavy-ion collisions at the CERN Large Hadron Collider
    corecore